Multivariate dynamical systems models for estimating causal interactions in fMRI

نویسندگان

  • Srikanth Ryali
  • Kaustubh Supekar
  • Tianwen Chen
  • Vinod Menon
چکیده

Analysis of dynamical interactions between distributed brain areas is of fundamental importance for understanding cognitive information processing. However, estimating dynamic causal interactions between brain regions using functional magnetic resonance imaging (fMRI) poses several unique challenges. For one, fMRI measures Blood Oxygenation Level Dependent (BOLD) signals, rather than the underlying latent neuronal activity. Second, regional variations in the hemodynamic response function (HRF) can significantly influence estimation of causal interactions between them. Third, causal interactions between brain regions can change with experimental context over time. To overcome these problems, we developed a novel state-space Multivariate Dynamical Systems (MDS) model to estimate intrinsic and experimentally-induced modulatory causal interactions between multiple brain regions. A probabilistic graphical framework is then used to estimate the parameters of MDS as applied to fMRI data. We show that MDS accurately takes into account regional variations in the HRF and estimates dynamic causal interactions at the level of latent signals. We develop and compare two estimation procedures using maximum likelihood estimation (MLE) and variational Bayesian (VB) approaches for inferring model parameters. Using extensive computer simulations, we demonstrate that, compared to Granger causal analysis (GCA), MDS exhibits superior performance for a wide range of signal to noise ratios (SNRs), sample length and network size. Our simulations also suggest that GCA fails to uncover causal interactions when there is a conflict between the direction of intrinsic and modulatory influences. Furthermore, we show that MDS estimation using VB methods is more robust and performs significantly better at low SNRs and shorter time series than MDS with MLE. Our study suggests that VB estimation of MDS provides a robust method for estimating and interpreting causal network interactions in fMRI data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multivariate dynamical systems-based estimation of causal brain interactions in fMRI: Group-level validation using benchmark data, neurophysiological models and human connectome project data.

BACKGROUND Causal estimation methods are increasingly being used to investigate functional brain networks in fMRI, but there are continuing concerns about the validity of these methods. NEW METHOD Multivariate dynamical systems (MDS) is a state-space method for estimating dynamic causal interactions in fMRI data. Here we validate MDS using benchmark simulations as well as simulations from a m...

متن کامل

Combining optogenetic stimulation and fMRI to validate a multivariate dynamical systems model for estimating causal brain interactions

State-space multivariate dynamical systems (MDS) (Ryali et al. 2011) and other causal estimation models are being increasingly used to identify directed functional interactions between brain regions. However, the validity and accuracy of such methods are poorly understood. Performance evaluation based on computer simulations of small artificial causal networks can address this problem to some e...

متن کامل

Dynamic models of brain imaging data and their Bayesian inversion

This work is about understanding the dynamics of neuronal systems, in particular with respect to brain connectivity. It addresses complex neuronal systems by looking at neuronal interactions and their causal relations. These systems are characterized using a generic approach to dynamical system analysis of brain signals dynamic causal modelling (DCM). DCM is a technique for inferring directed c...

متن کامل

Effect of HRF spatial variability on the accuracy of multivariate Granger causal networks obtained from fMRI data

Introduction The hemodynamic response function (HRF) of fMRI data is known to vary across subjects and brain regions [1]. Since HRF variability may be dictated, in part, by nonneuronal considerations, it has the potential to confound inferences about directional neuronal influences obtained from Granger causality (GC) analysis of fMRI data [2]. However, a systematic investigation of this confou...

متن کامل

Bayesian switching factor analysis for estimating time-varying functional connectivity in fMRI

There is growing interest in understanding the dynamical properties of functional interactions between distributed brain regions. However, robust estimation of temporal dynamics from functional magnetic resonance imaging (fMRI) data remains challenging due to limitations in extant multivariate methods for modeling time-varying functional interactions between multiple brain areas. Here, we devel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • NeuroImage

دوره 54 2  شماره 

صفحات  -

تاریخ انتشار 2011